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Abstract
We have studied the electronic structure of vertically assembled quantum
discs in a magnetic field with varying orientation using the effective mass
approximation. We calculate the four energy levels of single-electron quantum
discs and the two lowest energy levels of two-electron quantum discs in a
magnetic field with varying orientation. The change of the magnetic field
as an effective potential strongly modifies the electronic structure, leading to
splittings of the levels and anticrossings between the levels. The calculated
results also demonstrate the switching between the ground states with the total
spin S = 0 and 1. The switching induces a qubit controlled by varying the
orientation of the magnetic field.

1. Introduction

A semiconductor quantum dot (QD) is physically similar to a set of atomic electrons bound
to a nucleus and, for this reason, these structures are sometime termed ‘artificial atoms’. To
extend the atomic analogy further, QDs are considered as ‘artificial molecules’ [1] if they join
together. The molecular orbitals of coupled QDs have been investigated theoretically [2–6].
In relevant calculations, Harju et al [6] studied a two-electron QD molecule consisting of two
laterally coupled QDs in a magnetic field by the direct diagonalization of the Hamiltonian
matrix and designed a qubit using the total spin of the two-electron molecule. Fonseca
et al [5] studied stacked pyramids using an effective mass approximation with the effects
of strain and piezoelectric potential as local modifications of the conduction band offset.
In experimental investigations [7–9] on coupled QDs, progress in the ‘indium-flush’ [7]
technique led to high-quality vertically stacked quantum discs. Applications of vertically
aligned structures are focused on fabricating QD lasers [10, 11], light storage devices [12]
and quantum computers [13–17]. Burkard et al [13] obtained the electronic structure and
exchange coupling (the energy difference between the singlet and triplet in a coupled pair of
dots) for two orientations of the magnetic field: parallel and perpendicular to the growth plane.
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Pazy et al [14] obtained sub-picosecond spin-dependent switching of the Coulomb interaction
in an array of self-assembled InAs QDs for potential application in quantum information
processing. The existence of a strong built-in electric field [16] induced by the spontaneous
polarization and the piezoelectricity is exploited to generate entangled few-exciton states in
coupled quantum dots without resorting to external fields. Korkusiski et al [18] studied the
energy spectrum of the structures in the adiabatic approximation and the influence of the strain
and dot separation on the formation of coupled QD levels.

We concentrate our attention on vertically assembled quantum discs consisting of two
coupled disc-shaped QDs. The vertically assembled structure has previously been studied
in [18, 17] where the applied external magnetic field is perpendicular to and parallel to
the growth direction, while in the present study we introduce the magnetic field in varying
orientations as an effective potential, which generalizes the results of [13] to arbitrary
orientations of the magnetic field. The change of the magnetic field strongly modifies the
electronic structure, leading to splittings of the levels and anticrossings between the levels. On
the basis of these results, the calculation of two-electron levels is carried out by means of direct
diagonalization of the Hamiltonian matrix. Our results show that the electron correlations may
lead to switching of the total spin between S = 0 and 1 states [6]. Unlike in [6], we realize the
switching by changing the orientation of an external magnetic field. Our results support the
possibility of using the total spin of the system as a qubit controlled by varying the orientation
of the magnetic field. Since high-quality vertically stacked quantum discs can be fabricated
successfully [7], it is realistic to envisage obtaining qubits of this type.

2. The electronic structures of single-electron quantum discs

We assume that the two disc-shaped InAs QDs are two cylinders. Each disc grows on a wetting
layer (WL) of thickness W covered by a GaAs barrier. The two quantum discs have the same
height H (typically 1–2 nm) and the same radius R (typically 7–12 nm). The distance between
the two wetting layers, D, forms a quantum tunnelling barrier of thickness D − H , and the
conduction band offset between the quantum discs and the surrounding material gives rise to
the confining potential V0 for the quantum discs. The material parameters of the quantum
discs and WLs have their effects through the effective Rydberg Ry = mee4/2ε2h̄2 and the
effective Bohr radius aB = εh̄2/mee2, where me and ε are the effective mass of an electron
and the dielectric constant, respectively. Throughout this paper, we use Ry and aB as the units
of energy and length, respectively.

We first investigate the electronic structure of single-electron vertically assembled
quantum discs in a magnetic field with varying orientation using the effective mass
approximation. If the z direction is chosen to be in the heterostructure growth direction,
the external magnetic field can be expressed as B = B(0, cosα, sin α), α being the polar angle
relative to the y axis. With the vector potential A = (Bz cosα − By sin α/2, Bx sin α/2, 0),
the Schrödinger equation in cylindrical coordinates is written as

Hψ(r, θ, z) = Eψ(r, θ, z), (1)

where

H = − 1

r2

(
r
∂

∂r
r
∂

∂r
+
∂2

∂θ2

)
+
� sin α

2h̄
lz +

�2 Ryme sin2 α

8h̄
r2 +

�2 Ryz2

2meh̄2 cos2 α

− �2 Ryzr

2meh̄2 sin α cosα sin θ + i�z cosα

(
1

r sin θ

∂

∂θ
− ∂

cos θ ∂r

)

− ∂2

∂z2
+ V (r, z), (2)



Electronic structure of self-assembled InAs quantum discs 951

with the potential V (r, z) = −V0 inside the WL and quantum discs, and V (r, z) = 0 in the
barrier, where� = ωc/Ry , ωc = h̄eB/mec. In order to solve equation (1), we divide H into
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In the following, we will obtain the eigenvectors of the Hamiltonian H (1). Then, using
the eigenvectors as basis functions, we can obtain the Hamiltonian matrix of H . By direct
diagonalization of the Hamiltonian matrix, the eigenvectors and eigenvalues of the Hamiltonian
H will be obtained. In the adiabatic approximation [18], the eigenfunctions of the Hamiltonian
H (1) are written as (1/

√
2)eimθgvr (z) f vm(r). The functions gvr (z) and f vm(r) satisfy the following

set of equations [18]:[
− ∂2

∂z2
+ V (r, z)

]
gvr (z) = Ev(r)g

v
r (z), (5)

[HR + Ev(r)] f vm(r) = E f vm(r). (6)
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By using the transfer matrix formalism, the eigenfunctions of the Hamiltonian H (1),
(1/

√
2)eimθgvr (z) f vm(r), are obtained. Details of the computational procedure can be found

elsewhere [17]. Using (1/
√

2)eimθgvr (z) f vm(r) as the basis function,we rewrite the Hamiltonian
H = H (1) + H (2) in a matrix formulation and diagonalize it numerically. By means of the
diagonalization, we can find the eigenvalue Ei and the corresponding eigenstates ψi (r, θ, z)
of equation (1). The eigenstates ψi (r, θ, z) will be used as basis functions afterwards.

Figure 1 shows the dependence of the electronic states on the orientation of the external
magnetic field (B = 17 T). The four lowest states are presented with the structure parameters
H = 2, D = 7.5 and R = 12 nm, the confining potential V0 = 1 eV, corresponding to
the band offset between InAs and GaAs, the effective mass me = 0.023 m0 for unstrained
InAs, the effective mass me = 0.067 m0 for the GaAs barrier. The electronic states are
mainly determined by H (1), while H (2) combines the states with m ′ = m ± 1, and leads to
anticrossing between these levels. When α = 0◦ (or 180◦), the orientation of the magnetic field
is perpendicular to the z direction. The Zeeman effect is zero; thus the levels L3 and L4 are
degenerate separately. As the orientation of the magnetic field turns towards the z direction, the
levels L3 and L4 split due to the Zeeman effect and the levels L1 and L2 get higher due to the
effective potential�2 Ryme sin2 αr2/8h̄. As the magnetic field turns further to the z direction,
the effective potential�2 Ryme sin2 αr2/8h̄ becomes more and more important, which can be
understood easily from the fact that level L3 reverses the trend of getting lower. All crossings
between levels are anticrossings due to H (2).

3. The electronic structures of two-electron quantum discs and two-electron
quantum-disc qubits

In the following, we investigate the two-electron levels of vertically assembled quantum discs
versus the orientation of the magnetic field. The spin-free Hamiltonian of the system can be
expressed as

H = H1 + H2 +
e2

εr12
, (8)
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Figure 1. Four single-electron energies as functions of the orientation of the magnetic field
(B = 17 T) with structure parameters H = 2 nm, D = 7.5 nm and R = 12 nm. Alpha is
the polar angle relative to the y axis. Four levels are labelled L1, L2, L3 and L4.

where H1 and H2 are single-electron Hamiltonians of the system and we retain the formalism
of equation (2). The Zeeman coupling EZ = g∗µB BSZ of the magnetic field to SZ can be
taken into account afterwards. We have obtained numerically the eigenstates ψ(r, θ, z) of the
single-electron part of equation (8); thus the two-electron wavefunction with a total spin S can
be expanded as [6]

�S(r1, r2) =
∑
i� j

αi, j {ψi(r1, θ1, z1)ψ j (r2, θ2, z2) + (−1)Sψi (r2, θ2, z2)ψ j (r1, θ1, z1)}, (9)

which is symmetric for S = 0 and antisymmetric for S = 1. Since the spin part of the
wavefunction is not explicitly written,we will work with the spin-independent wavefunctions in
the following. The coefficient vector αl and the corresponding energy El for the lth eigenstate
are found from a generalized eigenvalue problem in which the Hamiltonian matrix elements
can be calculated numerically. By changing the number of the basis functions,we can check the
convergence and we find that it is sufficient for obtaining the two lowest double-electron states
by using the four lowest single-electron states as the basis functions. This can be explained
simply by the fact that the two double-electron states are mainly composed of the four single-
electron states when the former states are expanded according to equation (9). Moreover,
more double-electron states can be achieved by choosing more single-electron states as basis
functions.

Figure 2 shows the dependence of the two lowest states on the orientation of the magnetic
field (B = 17 T) in the range α = 0◦–180◦, for the structure parameters H = 2 nm,
R = 12 nm and D = 7.5 nm. The two lowest states possess different spins S = 1 and
0. When α = 0◦ (180◦), the S = 0 state is lower than the S = 1 state. As the orientation of the
magnetic field turns towards the z direction, the two lowest double-electron states approach
each other. At α = 64◦–72◦ and 108◦–116◦, the S = 1 state becomes the lower one. We can
explain the transition by means of the dependence of single-electron states on the magnetic
field. The two double-electron states are composed mainly of two lowest single-electron states.
As the magnetic field turns towards the z direction, the single-electron states approach each
other. Similarly, the two lowest two-electron states will approach each other as the orientation
of the magnetic field varies. If we do not take into account the electron interaction effects,
the S = 0 state should remain lower forever, for the two electrons in the S = 0 state occupy
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Figure 2. The two lowest two-electron states versus the orientation of the magnetic field (B = 17 T),
for structure parameters H = 2 nm, D = 7.5 nm and R = 12 nm. Alpha is the polar angle relative
to the y axis. The solid curve is for the S = 0 state and the dotted curve is for the S = 1 state.

the lowest single-electron state, while the two electrons in the S = 1 state cannot occupy the
lowest single-electron state simultaneously according to the Pauli exclusion principle. Due to
the effect of the electron interaction between the two electrons, the difference of the interaction
energy between the two states makes the state S = 1 lower at some point, and thus a transition
occurs. Now, we consider the effect of the Zeeman term on the energy levels. The energy
of the S = 1 state is lowered by about 60 µeV T−1, and that of the S = 0 state is unaltered.
According to the order of magnitude of the energy levels, the Zeeman term can be neglected.

The energy difference 	E between the lowest S = 0 and 1 states is plotted in figure 3,
for structure parameters H = 2 nm, R = 12 nm and D = 7.5 nm. Since the ground state spin
of the double-electron system is either S = 0 or 1, we can change the spin by adjusting the
orientation of the magnetic field (see figure 3). The transition from the S = 0 to the 1 state
allows us to use the total spin of the system as a qubit [6, 19] and an arbitrary single-qubit
rotation can be generated by varying the orientation of the magnetic field. One can obtain
the different regions of the S = 0 and 1 ground states by changing the structure parameters.
At certain structure parameters, we can also obtain the different regions of the S = 0 and 1
ground states by changing the strength of the external magnetic field. In figure 4, we show the
variation of the energy difference 	E with the strength of the external magnetic field. With
increasing strength of the external magnetic field, the two valleys of the S = 1 state become
apart from each other and the peak of the S = 0 state becomes higher. The reason for this is that
with increasing strength of the external magnetic field, its z direction component increases,
which mainly determines the electronic structures. Moreover, since the typical size of the
quantum disc is much smaller than that of the external confining potential in [6], the maximum
energy difference 	E in the S = 1 state is at least ten times as large as that in [6]. Since
high-quality vertically stacked quantum discs can be fabricated successfully, it is realistic to
envisage obtaining the qubit.

4. Conclusion

In conclusion, we have calculated the electronic structure of vertically assembled quantum
discs as a function of the orientation of the applied magnetic field. The electronic structures
are determined by the combined effect of the quantum confinement and the magnetic field.
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Figure 3. The energy difference between the triplet and singlet states 	E as a function of the
orientation of the magnetic field (B = 17 T), the structure parameters being the same as those in
figure 2.
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Figure 4. The energy difference between the triplet and singlet states 	E as a function of the
orientation of the magnetic field, with structure parameters H = 2 nm, D = 7.5 nm and R = 12 nm.
The external magnetic field is given three different strengths (B = 17, 18, 19 T).

The change of the magnetic field as an effective potential strongly modifies the electronic
structure, leading to splittings of levels and anticrossings between levels. The total spin of
the two-electron ground state of the quantum-disc system can be changed by adjusting the
orientation of the magnetic field. Our results support the possibility of using the system as a
qubit [6] of a quantum computer. This kind of qubit is novel, as it can be controlled by the
orientation of the magnetic field.
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